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RGB+ lighting

... is the path to 250 Im/W warm white

which means...

- Cree CR Series

SSL can broadly challenge tube fluorescents in commercial lighting and lower
the cost of incandescent replacements (less heat to dissipate)

with ...

<3

Philips Hue
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additional functionality of color tunability




Efficiency of RGB+

TABLE 3.1 ESTIMATED EFFICACIES AS A FUNCTION OF CCT AND CRI FOR A CM- LED DoE SSL MYPP 2013

CCT (K) Maximum LER (Im/W) Efficacy for 67% Conversion (Im/W)
380 365 356 255 245 239
407 389 379 273 261 254
428 407 394 287 273 264

Red - 615nm When RGB all exceed 40% wall plug
Blue - 460nm efficiency, then 150 Im/W color-

Green - 540 ite i i
reen - 540nm tunable white is achievable

CRI-90
CCT - 3270

e Red and blue are already at this
performance
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Science Challenge : Green Efficiency
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Fig. 2. State-of-art external quantum efficiencies for high-power visible-spec-
trum LEDs (7; = 25 ®C): (1) InGaN TFFC LEDs, 350 mA (this paper): (2)
InGaN VTF LED, 1000 mA [42]: (3) InGaN CC LEDs employing patterned
substrates [35]; and (4) Production performance, AlGalnP TIP LEDs [9], Philips
Lumileds Lighting Co., 350 mA. V' ( A} is the luminous eye response curve from
CIE. Dashed lines are guides to the eye.

Krames, et al., IEEE J. Display Tech., June 2007

Green gap

. — ~20%WPE

Start by doubling...




Semiconductors emitting in the green
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Fig. 21.4. Room-
temperature bandgap
energy versus lattice
constant of common
elemental and binary
compound semicon-
ductors.
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Today’s contenders: AlinGaP, w-InGaN - dominant LED materials
Can others play? ZnCdSe? Cubic InGaN? long list...
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AlInGaP - a fundamental energy band problem with green
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Almost 100% efficiency can be achieved here
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InGaN bandstructure - looks good
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Suzuki, M, T. Uenoyama, A. Yanase, First-principles calculations
of effective-mass parameters of AIN and GaN, Phys. Rev. B 52,
11(1995), 8132-8139.

Indirect band minima located far from I" point




Auger recombination contributes

Internal quantum efficiency
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Kioupakis, et al., Appl. Phys. Lett. 101, 231107 (2012)

Green ¢-plane QWs
exhibit more Auger
recombination than
Blue QWs because
QCSE reduces rate
coefficients
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Non-polar planar could help, but growth conditions and strain
hurt...

wo

Critical Thickness ,nm

* More indium is needed when growing
on non-polar plane = need to lower
growth temperature = more non-
radiative recombination centers

0 B (o == (1 @5 A ] = [
inclination angle 0 (%) Wernicke, et al., Semicond. Sci. Technol. 27 (2012) 024014
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InGaN alloy tries to relieve its stress by becoming nonuniform,

even in the blue compositional range
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Effect is stronger in the green
Limiting factor for green laser performance

Optimization of growth conditions by several
groups trying to address this

Tilt domains observed in XRD
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Shojiki, et al., Jpn. J. Appl. Phys. 51 (2012) 04DHO1
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Growth on “foreign” substrates which relieve strain
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Fig. 3. Reciprocal space maps for (a) 2310 and (b) 2202 diffractions Shimomoto, et al., Appl. Phys. Express 3 (2010) 061001

for m-plane Ing33GagsrN on ZnO. The reciprocal points for bulk Ingss-
GagesrN are also shown as the open circles in the maps.

e Other approaches:
strain-relaxed InGaN-on-sapphire templates from Soitec (epitaxial lift-off)

other ways?
 Drawbacks: substrate cost has to be competitive with sapphire
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Nanometer texturing/nanowires to address these issues

e Glo nanowire LEDs

* Provide textured template for InGaN to “master” the strain

* Small sizes = edges, corners can accommodate stress, enabling a
defect-free QW

e (an be cost effective, uses many existing materials & technologies
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Better green is a tough problem....

worth solving ...

for SSL and many other applications (displays, medical instrumentation)

High risk & high reward ---- Core Technology
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